Iterating the minimum modulus

Dan Nicks
University of Nottingham

March 2022

Joint work with Phil Rippon and Gwyneth Stallard

For any transcendental entire function (tef) $f: \mathbb{C} \rightarrow \mathbb{C}$, denote the maximum and minimum modulus by

$$
M(r)=M(r, f)=\max _{|z|=r}|f(z)| \quad \text { and } \quad m(r)=m(r, f)=\min _{|z|=r}|f(z)| .
$$

- Clearly $m(r) \leq M(r)$ for all $r \geq 0$.
- $M(r)$ strictly increases to ∞ as $r \rightarrow \infty$.
- $m(r)$ alternately increases and decreases between values at which $m(r)=0$.

We denote the iterates of $M(r)$ and $m(r)$ by $M^{n}(r)$ and $m^{n}(r)$. - So, for example, $m^{2}(r)=m(m(r))$.

The iterated maximum modulus $M^{n}(r)$ has played a role in complex dynamics for some years. For any tef, if r is large enough then we have

$$
M^{n}(r) \rightarrow \infty \text { as } n \rightarrow \infty .
$$

This talk surveys the role played by the iterated minimum modulus $m^{n}(r)$.

After some introductory comments on escaping sets and spiders' webs, the talk has two main parts:

1) Results about entire functions with the property:

$$
\text { there exists } r>0 \text { such that } m^{n}(r) \rightarrow \infty \text { as } n \rightarrow \infty .
$$

2) Examples of functions that do, or do not, satisfy this iterated minimum modulus condition (\star).

Fatou, Julia and escaping sets

Let f be a tef and denote its iterates by f^{n}. The following partition of the complex plane is central to complex dynamics.

Definition

The Fatou set of f is

$$
F(f):=\left\{z \in \mathbb{C}:\left(f^{n}\right)_{n \in \mathbb{N}} \text { is a normal family on some nhd of } z\right\} .
$$

The Julia set $J(f):=\mathbb{C} \backslash F(f)$.

In recent decades the escaping set has been studied in detail.

Definition

The escaping set $I(f):=\left\{z \in \mathbb{C}: f^{n}(z) \rightarrow \infty\right.$ as $\left.n \rightarrow \infty\right\}$.

Eremenko (1989) showed that

- $I(f) \cap J(f) \neq \emptyset$, and
- $J(f)=\partial I(f)$.

Eremenko's (former) conjecture

Eremenko also showed in 1989 that all components of $\overline{I(f)}$ are unbounded.

Eremenko's conjecture

All components of $I(f)$ are unbounded.

Martí-Pete, Rempe and Waterman very recently showed that Eremenko's conjecture does not hold in general - it is possible for $I(f)$ to have a bounded (even singleton) component.

- However, for many families of tefs all components of $I(f)$ are unbounded.
- Moreover, Rippon and Stallard (2005) showed that $I(f)$ always has at least one unbounded component.

Spiders' webs

We will see that for certain families of tefs $I(f)$ has the structure of a "spider's web".

Definition

A set $I \subset \mathbb{C}$ is a spider's web if

- I is connected; and
- there exist bounded, simply connected domains G_{n} such that

$$
G_{n} \subset G_{n+1}, \quad \partial G_{n} \subset I, \quad \text { and } \quad \bigcup_{n \in \mathbb{N}} G_{n}=\mathbb{C}
$$

Note: $I(f)$ a spider's web $\Longrightarrow I(f)$ connected \Longrightarrow Eremenko's conjecture holds for f.

Part 1: Results when $m^{n}(r) \rightarrow \infty$

Our first result concerns tefs for which $m^{n}(r) \rightarrow \infty$ particularly quickly.
Theorem (Rippon, Stallard)
If f is a tef and there exist $r \geq R>0$ such that

$$
m^{n}(r) \geq M^{n}(R) \rightarrow \infty, \text { as } n \rightarrow \infty
$$

then $I(f)$ is a spider's web (so is connected) and the Fatou set $F(f)$ has no unbounded components.

The hypothesis above is satisfied if any of the following hold:

- f has a multiply-connected Fatou component;
- f grows not too fast and has "regular growth";
- f grows extremely slowly; for example if $\exists k \geq 2$ such that $\log \log M(r)<\frac{\log r}{\log ^{k} r}$ for large r.

A digression on Baker's conjecture

Baker's conjecture (1981)

The Fatou set of a tef f has no unbounded components if the order of f is less than $\frac{1}{2}$, or if f has order $\frac{1}{2}$ minimal type.

Recall that the order of f is $\rho(f):=\limsup _{r \rightarrow \infty} \frac{\log \log M(r)}{\log r}$ and that f is said to have order $\frac{1}{2}$ minimal type if

$$
\rho(f)=\frac{1}{2} \quad \text { and } \quad \lim _{r \rightarrow \infty} \frac{\log M(r)}{r^{1 / 2}}=0
$$

- Baker's conjecture holds for the functions on the previous slide, i.e. satisfying the condition that $\exists r \geq R$ with $m^{n}(r) \geq M^{n}(R) \rightarrow \infty$.
- However, not all functions of order $<\frac{1}{2}$ satisfy this condition. Not even all functions of order zero!
J.-H. Zheng (2000) proved that for functions of order $\leq \frac{1}{2}$ min type, all (pre)periodic components of the Fatou set are bounded. So the remaining case for Baker's conjecture is to rule out unbounded wandering Fatou components.

We have a partial result for real entire functions. Here 'real' means that $f(x) \in \mathbb{R}$ when $x \in \mathbb{R}$, or equivalently $f(\bar{z})=\overline{f(z)}$.

Theorem (N., Rippon, Stallard)

Let f be a real tef of order less than 1 with only real zeroes.
Then f has no orbits of unbounded wandering Fatou components.

J.-H. Zheng (2000) proved that for functions of order $\leq \frac{1}{2}$ min type, all (pre)periodic components of the Fatou set are bounded. So the remaining case for Baker's conjecture is to rule out unbounded wandering Fatou components.

We have a partial result for real entire functions. Here 'real' means that $f(x) \in \mathbb{R}$ when $x \in \mathbb{R}$, or equivalently $f(\bar{z})=\overline{f(z)}$.

Theorem (N., Rippon, Stallard)

Let f be a real tef of order less than 1 with only real zeroes.
Then f has no orbits of unbounded wandering Fatou components.
Using Wiman's result that the minimum modulus $m(r)$ is unbounded for functions of order $\leq \frac{1}{2} \min$ type, we get:

Corollary

Baker's conjecture holds for real tefs with only real zeroes.

Next we move on from the strong condition $m^{n}(r) \geq M^{n}(R)$ to the much weaker condition that

$$
\text { there exists } r>0 \text { such that } m^{n}(r) \rightarrow \infty \text { as } n \rightarrow \infty .
$$

Theorem (Osborne, Rippon, Stallard)

Let f be a tef. If (\star) holds, then the set of points with unbounded orbit

$$
\left\{z \in \mathbb{C}:\left(f^{n}(z)\right)_{n \in \mathbb{N}} \text { is unbounded }\right\}
$$

is connected.

Theorem (N., Rippon, Stallard)

Let f be a real tef of finite order with only real zeros. If (\star) holds, then the escaping set $I(f)$ is a spider's web (so $I(f)$ is connected).

Sketch of proof

Let f be real tef, $\rho(f)<\infty$, with only real zeroes. Assume $m^{n}(r) \rightarrow \infty$ for some r. We can show that $\rho(f) \leq 2$ (more on this later).
Suppose $I(f)$ is not a spider's web.

- Find a long curve γ_{0} that is disjoint from $I(f)$. [Actually some subset]
- Find sequence $\gamma_{n+1} \subset f\left(\gamma_{n}\right)$ such that either:
(I) the γ_{n} experience repeated radial stretching, escaping to ∞ (so γ_{0} meets $I(f)$ - contradiction);

OR
(II) eventually some γ_{n} winds round 0 . But then γ_{n} meets an unbounded component of $I(f)$, again a contradiction. \square

Part 2: For which functions is there r with $m^{n}(r) \rightarrow \infty$?

It is often useful to consider the increasing quantity

$$
\tilde{m}(r):=\max _{0 \leq s \leq r} m(s)
$$

Part 2: For which functions is there r with $m^{n}(r) \rightarrow \infty$?
It is often useful to consider the increasing quantity

$$
\tilde{m}(r):=\max _{0 \leq s \leq r} m(s) .
$$

This leads to equivalent ways to state the $m^{n}(r) \rightarrow \infty$ condition:
Lemma (Osborne, Rippon, Stallard)
Let f be a tef. The following are equivalent:

- There exists $r>0$ such that $m^{n}(r) \rightarrow \infty$ as $n \rightarrow \infty$.
- There exists $R>0$ such that $\tilde{m}(r)>r$ for all $r \geq R$.
- There exists $r_{n} \rightarrow \infty$ such that $m\left(r_{n}\right) \geq r_{n+1}$.

This lemma often allows one to show that (\star) holds (or does not hold) from function theoretic considerations. For example ...

Theorem (Osborne, Rippon, Stallard)

Let f be a tef. There exists $r>0$ such that $m^{n}(r) \rightarrow \infty$ if any of the following hold:
(a) The order $\rho(f)<\frac{1}{2}$.
(b) f has a multiply-connected Fatou component.
(c) f has "Hayman gaps" or f has finite order and "Fabry gaps".

Here Fabry gaps means that $f(z)=\sum a_{k} z^{n_{k}}$ with $n_{k} / k \rightarrow \infty$; while $n_{k}>k^{1+\varepsilon}$ implies Hayman gaps.

Proof of (a)
If $\rho(f)<\alpha<\frac{1}{2}$, then by the $\cos \pi \rho$ theorem there is $\varepsilon>0$ such that for all large r there is $s \in\left(r^{\varepsilon}, r\right)$ such that $m(s)>M(s)^{\cos \pi \alpha}$. So

$$
\tilde{m}(r) \geq M(s)^{\cos \pi \alpha} \geq M\left(r^{\varepsilon}\right)^{\cos \pi \alpha}>r
$$

for all large r (using $\frac{\log M(r)}{\log r} \rightarrow \infty$).
Thus, by the previous lemma, there exists r such that $m^{n}(r) \rightarrow \infty$.

Examples

Osborne, Rippon and Stallard give the following examples of functions which do or do not have the property that

$$
\text { there exists } r>0 \text { such that } m^{n}(r) \rightarrow \infty \text { as } n \rightarrow \infty .
$$

- $\cos \sqrt{z}$ has order $\frac{1}{2}$ and does not satisfy (\star) since $m(r) \leq 1$.
- $2 z \cos \sqrt{z}$ has order $\frac{1}{2}$ and does satisfy (\star).
- Moreover, for $p \in \mathbb{N}, \cos z^{p}$ does not satisfy (\star), but $2 z \cos z^{p}$ does.
- Functions in the Eremenko-Lyubich class \mathcal{B} have $m(r)$ bounded so do not satisfy (\star).
- $2 z\left(1+e^{-z}\right)$ satisfies (\star).
- $z+b \sin z$ with $b>2 \pi$ satisfies $(*)$.
- Fatou's function $z+1+e^{-z}$ does not satisfy (\star), but $I(f)$ is a spider's web (Evdoridou).

Order $\frac{1}{2}$ minimal type

Recall that:

- Order $<\frac{1}{2}$ implies $\exists r$ such that $m^{n}(r) \rightarrow \infty$.
- Wiman: order $\frac{1}{2}$ minimal type implies $m(r)$ is unbounded.
- Order $\frac{1}{2}$ min type means $\limsup _{r \rightarrow \infty} \frac{\log \log M(r)}{\log r}=\frac{1}{2}$ and $\frac{\log M(r)}{r^{1 / 2}} \rightarrow 0$.

So we might ask: is order $\frac{1}{2}$ minimal type sufficient to imply (\star) ?

Theorem (N., Rippon, Stallard)

Let f be a tef of order at most $\frac{1}{2}$ minimal type. Then (\star) holds if $\exists r_{0}$ such that, for $r>r_{0}$

$$
\frac{\log M(r)}{r^{1 / 2}} \leq \frac{1}{4} \frac{\log M(s)}{s^{1 / 2}}
$$

for some $0<s<r$ which satisfies $M(s) \geq r^{2}$.
The condition here says roughly that $\frac{\log M(r)}{r^{1 / 2}} \rightarrow 0$ in a regular manner.
Without some extra condition, the answer to the above question is "no" ...

Recall $(\star): \quad \exists r>0$ such that $m^{n}(r) \rightarrow \infty$.

Theorem (N., Rippon, Stallard)
There exist tefs with order $\frac{1}{2}$ minimal type for which (\star) does not hold. These can be chosen to be real functions with only real zeroes.

Construction of examples is via a generalisation (by R. + S.) of a method of Kjellberg. This produces tefs with slow growth and tight control over $m(r)$ by first making a continuous subharmonic function with the required properties.

$\frac{1}{2} \leq$ Order ≤ 2

Recall ((\star) : $\exists r>0$ such that $m^{n}(r) \rightarrow \infty$.

Theorem (N., Rippon, Stallard)

For any $\frac{1}{2} \leq \rho \leq 2$, there exist examples of real tefs with only real zeroes and order ρ such that (\star) does, and does not, hold.

Examples constructed as infinite products:

- Using very evenly distributed zeroes one can make $m(r)$ bounded, so (\star) fails. E.g. for $\frac{1}{2}<\rho<1$

$$
f(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{n^{1 / \rho}}\right) .
$$

(Hardy, 1905)

- Using very unevenly distributed zeroes (big gaps and high multiplicities) can make examples where (\star) holds.

Order >2

Theorem (N., Rippon, Stallard)

Let f be a tef with $2<\rho(f)<\infty$ and only real zeroes. Then
(a) there exists θ such that $f\left(r e^{i \theta}\right) \rightarrow 0$ as $r \rightarrow \infty$; and
(b) 0 is a deficient value of f.
(a) Proof uses an analysis of the Hadamard factorisation of f.
(b) Follows from a result of Edrei, Fuchs and Hellerstein (1961).

Recall (\star) : $\quad \exists r>0$ such that $m^{n}(r) \rightarrow \infty$.

- Note that either (a) or (b) implies $m(r) \rightarrow 0$ as $r \rightarrow \infty$, so (\star) does not hold for such f.
- This is used in the proof of the earlier result that for a real tef of finite order with only real zeroes and $(\star), I(f)$ is a spider's web.

Conjecture: (\star) fails for all tef of infinite order with only real zeroes.

